博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Some remarks on definition 1.1.1,A field guide to algebra
阅读量:6614 次
发布时间:2019-06-24

本文共 1453 字,大约阅读时间需要 4 分钟。

Definition 1.1.1.Let $\sum$ be a set of points in the plane $\mathbf{R}^2$. One says that a point $P$ is constructible with ruler and compass from $\sum$ if there is an integer $n$ and a sequence of points $(P_1,\cdots,P_n)$ with $P_n=P$ and such that for any $i\in\{1,\cdots,n\}$, denoting $\sum_i=\sum\bigcup\{P_1,\cdots,P_{i-1}\}$, one of the following holds:

1.there are four points $A, B, A'$ and $B'\in\sum_i$ such that $P_i$ is the intersection point of the two nonparallel lines $(AB)$ and $(A'B')$;

2.there are four points $A, B, C$, and $D\in\sum_i$ such that $P_i$ is one of the (at most) two intersection points of the line $(AB)$ and the circle with center $C$ and radius $CD$;

3.there are four points $O, M , O'$ and $M'\in\sum_i$ such that $P_i$ is one of the (at most) two intersection points of the distinct circles with, respectively, center $O$ and radius $OM$ ,and center $O$ radius $O'M'$ .

Remark 1. When $i<j$,$\sum_i\subseteq \sum_j$.Once $P$ is constructed,$P$ itself can be added into the "existing point set".And you start from this existing set,to creat even newer existing set.......

Remark 2.If $P$ is constructible from $\sum$,then you can get $P$ by using compass and ruler finitely many times,because $n$ is a natural number,a natural number is finite.

 

Remark 3.However,there is a  minor flaw in this definition:1.The definition fail the case of $i=1$.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/09/21/3828279.html

你可能感兴趣的文章
php使用curl下载指定大小的文件
查看>>
VS2013创建Node.js C++ Addons的过程
查看>>
amaze ui中的icon button
查看>>
tcp 三次握手
查看>>
XML中添加换行符
查看>>
JVM内存配置
查看>>
实战-JavaWweb的Servlet和Filter运行关系(四)
查看>>
rsync与FTP(vsftpd)在不同工作场景中的应用
查看>>
会话层数据交换过程示例
查看>>
中国超级计算机扩大领先优势:TOP500总量首次超越美国
查看>>
cocos2d-x学习笔记10:动作3:补间动作
查看>>
SharePoint 2010 新体验4 - SharePoint Workspace
查看>>
一种特殊的数据库性能测试方法
查看>>
C/C++程序员应聘常见面试题深入剖析(1)
查看>>
SQL2K数据库开发十二之表操作创建CHECK约束
查看>>
java运行原理以及环境变量的配置
查看>>
有趣又好玩的glm库
查看>>
关于本人拙著《Cocos2d-x 3.x实战:卡牌手游开发指南》源码的有关说明
查看>>
参加2009年网络优化沙龙
查看>>
Oracle数据库日常管理之数据备份,恢复及迁移 (第一讲 )
查看>>